Científicos brasileños desarrollan nanopartículas que pueden inactivar el virus HIV

Para reproducirse en el organismo, los virus pasan por un proceso de adsorción (fijación) de sus partículas en las células infectadas, al conectarse con receptores de las membranas celulares. Con el objetivo de impedir este enlace y, por consiguiente, la infección, investigadores del Centro Nacional de Investigaciones en Energía y Materiales (CNPEM), en Brasil, desarrollaron una estrategia en la cual se emplean nanopartículas cargadas con grupos químicos capaces de atraer a los virus, unirse a éstos y ocupar las vías de adsorción que serían utilizadas en los receptores celulares.

De esta forma, los virus, ya con sus superficies ocupadas por los grupos químicos cargados de nanopartículas, se ven incapacitados para unirse a las células del organismo. Esta estrategia innovadora de inactivación viral se desarrolló en el marco de la investigación “Funcionalización de nanopartículas: aumento de la interacción biológica”, realizada y coordinada por Mateus Borba Cardoso.

Se trata del primer estudio que demuestra la inactivación viral basada en la química de superficie de nanopartículas funcionalizadas.

“Este mecanismo de inhibición viral transcurre mediante la modificación de nanopartículas en laboratorio: se le asignan funciones a su superficie mediante la adición de grupos químicos capaces de atraer a las partículas virales y de conectarse con ellas. Este efecto estérico (forma de la molécula en el espacio), relacionado con el hecho de que cada átomo dentro de una molécula ocupa una determinada cantidad de espacio sobre la superficie, impide que los virus lleguen hasta sus blancos, que son las células, y se conecten con éstas, porque ya se encuentran ‘ocupados’ por las nanopartículas”, explica Borba Cardoso.

Los científicos sintetizaron nanopartículas de sílice –un componente químico de diversos minerales– con propiedades superficiales distintas y evaluaron su biocompatibilidad con dos tipos de virus. La eficacia antiviral se analizó en pruebas in vitro con los virus HIV y VSV-G –que causa estomatitis vesicular–, infectando células del tipo HEK 293, un cultivo celular originariamente compuesto por células de un riñón perteneciente a un embrión humano. Las partículas virales fueron preparadas para expresar una proteína fluorescente que altera la coloración de las células infectadas, lo cual permite que los investigadores realicen un “seguimiento” de la infección.

“Las nanopartículas debidamente funcionalizadas y las partículas virales pasaron entonces por un tiempo de incubación para que interactuasen unas con otras, en función de las propiedades de superficie de ambas. Cuando existe una atracción fuerte, provocada por los grupos químicos presentes en la superficie de las nanopartículas, la preferencia de los virus apunta a unirse a éstas, y no a las células”, comenta Borba Cardoso.

Mediante microscopía de fluorescencia, fue posible realizar el seguimiento de la infección y también de las células que no se vieron afectadas por la misma. Las nanopartículas llegaron a reducir la infección viral hasta un 50%, lo cual demuestra la eficiencia de esta estrategia.

“Este resultado podría llegar al 100% si aumentásemos la cantidad de nanopartículas funcionalizadas durante el período de incubación”, dice el investigador.

De acuerdo con Borba Cardoso, esta estrategia podría utilizarse en la detección y la eliminación de virus en bolsas de sangre antes de las transfusiones, por ejemplo. A tal fin, comenta el investigador, están estudiándose nanopartículas magnéticas que, una vez dentro del medio sanguíneo presente en las bolsas, se enlazarían
a los virus, inactivándolos y siendo posteriormente separadas de la sangre mediante el empleo de un imán que se llevaría consigo a las partículas virales. La afinidad entre los grupos químicos cargados por las nanopartículas y las partículas virales también podría servir para el desarrollo de nuevas técnicas de detección del HIV y de otros virus.